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ABSTRACT

Modular  design  of  software stacks  and hardware
components is indispensable for efficient, robust and
scalable projects in many fields. Modularity enables
independent  parallel  development  and  facilitates
large cooperative projects. On the downside commu-
nication is slowed down extensively, if a number of
different  frameworks  is  of  use.  To  overcome  this
drawback, the paper at hand introduces a lightweight
communication library, specifically designed for ro-
botic applications. It is framework and OS indepen-
dent and intended to provide a unified communica-
tion  layer.  While  being  generic,  the  library  is  also
flexible,  offering  individual  channels  for  reliable
command transfer and non-blocking telemetry data.
The  provided  communication  sockets  are  config-
urable  to  use  any  implemented  transport  protocol,
while not  being limited to ethernet  based ones.  By
default the transport is using the networking library
ZeroMQ1 (ZMQ),  which  provides  various  patterns,
e.g.  publish/subscribe,  and  supports  many-to-many
connections. An additional protocol implementation,
UDT2, is offered for high-latency connections. Con-
ducted benchmark tests demonstrate that the library,
especially  the  UDT  transport  implementation,  pro-
vides  a  faster  and  more  reliable  middleware  than
what is currently used in native ROS3. This is particu-
larly the case for network setups with an emulated
delay (2 s) or package loss (20%) and large chunks of
telemetry data, which emphasizes  the  suitability of
the  library  for  space  applications  and  high-latency
scenarios.

1 INTRODUCTION

Most  robotic  systems implement  their  control  by
means  of  Robot  Control  and  Operating  Systems
(RCOS), e.g. ROS or ROCK [1]. They provide stan-

1 zeromq.org
2 udt.sourceforge.io
3 ros.org

dards for modeling and implementing control archi-
tectures by defining building blocks,  interfaces and
communication channels. While this approach facili -
tates and speeds up the development and implementa-
tion process, it is bound to limitations in multi-robot
cooperation scenarios. Most notably when a variety
of project partners is involved, a diversity of RCOS
may be of use. Consequently, the communication be-
tween  involved  software  stacks  is  complicated  and
the often  time-consuming type  conversion at  many
communication nodes can result in a significant set-
back regarding latency and update frequency, which
already  pose  great  challenges  in  space  scenarios.
Hence  it  is  advantageous  to  use  a  common,  light -
weight and configurable communication library, that
transforms the RCOS specific  communication mes-
sages into a mutual communication protocol. This ap-
proach  supersedes  the  need  for  customized  frame-
work-dependent  solutions  for  each  connection  and
enables all  components  to  effortlessly  interact  with
each other, while being adaptive to task specific con-
strains like high-latency.

The  introduced  Robot  Remote  Control  library4

(RRC) is an open-source solution that is specifically
designed for robotic multi-agent applications. It  of-
fers a fast and reliable, framework-independent inter-
face  to  connect  multiple  instances  through  inter-
changeable transport protocols.  Individual channels
for telemetry data and commands  enhance the ability
to tailor  the communication channels with different
parameterizations  or  even  completely  independent
protocols.  This  allows for reliable transfer  of com-
mands, while at the same time offering fast and non-
blocking telemetry updates.  In general the message
transport is implemented as an open interface, where
the default can easily be replaced with other proto-
cols, while not being limited to ethernet based imple-
mentations.  By  default  the  implemented  transport
layer  is  based on the high-level  networking library
ZeroMQ  (ZMQ)  and  Google's  language-  and  plat-

4 github.com/dfki-ric/robot_remote_control



form-neutral protocol buffers protobuf5 for serializa-
tion. With special regard to space applications, which
by nature have to deal with high signal delays, a reli -
able UDT based point-to-point protocol option is im-
plemented in order to support high-latency connec-
tions.

In this paper, section 2 elaborates on the concept
and  implementation  of  the  library.  Section  3  de-
scribes and discusses setup and results of benchmark
tests  performed  with  the  library  in  comparison  to
ROS. Section 4 concludes the paper and briefly de-
picts a number of use-cases.

2 METHOD AND IMPLEMENTATION

2.1 Concept and Class Structure

The introduced Robot Remote Control library is a
lightweight, pure C++ library compiled with CMake.
Only  OS  dependencies  are  the  protobuf,  protobuf-
compiler and ZMQ libraries, which run on most OS
systems and support a broad scope of languages.

In  order  to  communicate  using  the  presented  li-
brary, two entities have to exist. On the one hand the
ControlledRobot class (CR), which is receiving com-
mands and sharing telemetry updates.  On the other
hand the RobotController class (RC), which is send-
ing commands and receiving telemetry data.  While
the chosen names might seem limiting, each robot or
network node can define an arbitrary amount of both
available objects  and send as well  as receive com-
mands or telemetry to as many entities as required.
Thereby commands are getting acknowledged upon
retrieval. The receipt of telemetry data on the other
hand is  not  confirmed by default.  Both  classes  are
compiled into individual shared libraries during the
build process.

Fundamental to these two classes is the transport
implementation, which by default uses the ZMQ net-
working library. During transport initialization the IP
address and port number for connecting the sockets
are defined. The generated transports are handed to
the CR and RC in  their  constructor.  Thus offering
endless opportunities to configure the command and
telemetry channels to best accommodate the needed
requirements for any setup.

Both classes, CR and RC, implement the abstract
update function from their UpdateThread base class,
which handles the periodic call of the update method
in  its  own  thread.  Both,  commands  and  telemetry
buffers are immediately sent via the respective com-

5 developers.google.com/protocol-buffers

munication sockets of one class object and are evalu-
ated and processed in the update method of the other
class. In an effort to make the last telemetry message
available  for  reliable  requests  over  the  command
transport channel, the most recent telemetry entry is
also stored in a buffer on the CR side.

The library provides a rich set of message types in -
cluding e.g. Twist, JointState and Wrench. Additional
types can easily be defined in the proto3 formatted
RobotRemoteControl.proto6 file. However a more en-
during way to extend the libraries functions and mes-
sage types is offered via inheritance. The library can
act as a base library and  enables encapsulation of ad-
ditional features and types in form of another shared
library (as shown in the examples on github7). This
approach  allows  to  comfortably  accommodate  task
specific requirements, while profiting from a seam-
less  integration  of  developments  and  updates  from
the  main  library.  Besides  the  extended  library  re-
mains compatible with the base one.

2.2 Message Types

The table below (Tab. 1) lists all currently imple-
mented command and telemetry types. At this point it
shall be emphasized that the presented set serves as a
generic foundation and can easily be extended with
the methods described in the previous sub-section.

Table 1:  Available command and telemetry types

Commands Telemetry

Pose Pose

JointState JointState

GoTo WrenchState

Twist SimpleSensor

SimpleAction RobotState

ComplexAction Map

LogLevel LogMessage

2.3 Serialization

The afore mentioned .proto file contains the basic
message description with a straight forward syntax:

message Position {
    double x = 1;
    double y = 2;
    double z = 3;
}

6 github.com/dfki-ric/robot_remote_control/blob/
master/src/Types/RobotRemoteControl.proto

7 github.com/dfki-ric/robot_remote_control/tree/mas-
ter/examples/extending



Making use of the protobuf compiler library pro-
toc8,  this file is processed into a header and imple-
mentation  file,  handling  de-/serialization  of  all  de-
scribed message types. The generation of these files
is triggered by Cmake during the build process of the
library.

2.4 Transport

By  default  the  libraries  transport  layer  is  using
ZMQ.  ZMQ  is  an  open-source,  high-performance,
asyncronous messaging library, which can run with-
out a message broker. It offers a number of messag-
ing  patterns  like  publish/subscribe,  request/reply  or
fan-out/fan-in. Thus offering reliable and non-block-
ing message transfer as well  as the opportunity for
many-to-many connections.

As an alternative transport a UDT implementation
is included as part of the library. UDT is a reliable
UDP [2] based transport protocol, with its own relia-
bility and congestion control algorithm. It establishes
a  point-to-point  connection,  is  highly  configurable
and specifically designed for data intensive applica-
tions.  Furthermore  UDT  is  able  to  use  unlimited
bandwidth at least within terrestrial areas [3].

Next  to  the  implemented  transport  option,  any
transport, even satellite or radio communication can
be added to the library, as long as it provides reliable
send()  and  receive()  functions  and  implements  the
Transport.hpp interface.

3 PERFORMANCE TESTS

3.1 Experimental Setup

In order to benchmark the library, an experiment is
set up to classify its  performance in comparison to
the commonly used ROS framework. In an effort to
minimize disturbances due to general network traffic
an independent local wireless network is setup using
an  Alice  Modem  WLAN  1421  fabricated  by  Ar-
cadyan.  Two hosts,  Dell  Inspiron 15 7000 running
Ubuntu 18.04, and Samsung R519 running a docker
image of Ubuntu 18.04, are connected to the network
and each launch an executable in the scope of the ex -
periment.  The  two  testing  entities  can  act  as  ROS
nodes  using  the  Melodic  Morenia  distribution,  but
they  can  also  provide  independent  communication
sockets using the presented library. The executables
are run as sender or repeater, while the latter is re-
turning  the  received  message  (telemetry)  or  an  ac-

8 manpages.ubuntu.com/manpages/focal/en/man1/
protoc

knowledgment (commands) back to the sender. Thus
the round trip or transmission time can be measured
reliably without error-prone time synchronization of
the host systems.

Before each experiment the network properties are
analyzed as described in 3.2. For each test the round
trip time of  telemetry  data  or  transmission time of
commands  is  measured  over  200 consecutive  runs,
while the final results are composed by three com-
plete tests, conducted on different days. Communica-
tion over the telemetry channel is evaluated by send-
ing a random strings of defined byte size forth and
back using topics (ROS) or  non-blocking telemetry
transport (RRC). Commands, in the form of a random
twist message, are send from one executable and re-
ceive a uint16 formatted acknowledgment in return.
Per default the command transfer implemented by the
RRC library gets acknowledged with an uint16 upon
retrieval. For ROS this reliability feature is induced
as a service call with a twist command as request and
an uint16 as response. While UDT communication is
always point-to-point,  the ZMQ transport is config-
ured to transfer telemetry data via publish/subscribe
and commands using the request/reply pattern.

With special regard to space applications in orbital
and planetary environments, which by nature have to
deal with high signal delays, an additional round of
tests is conducted with an artificial delay. The delay
is  emulated on the  senders  hosts  network interface
using netem9. This allows to provide a reproducible
high-latency scenario.  Netem is  an enhancement  of
the linux traffic control facilities and is configured to
replicate a fixed delay of 2000 ms. Furthermore it is
used to emulate a package loss of 20 % for another
set of command transfer time measurements.

3.2 Network properties

To  ensure  reproducibility  the  local  wireless  net-
work is characterized before each conducted test. The
network latency and packet loss is measured through
an ICMP echo request using the commonly known
ping10 command over 100 consecutive runs. In order
to quantify the available tcp bandwidth and latency
variation (jitter) the iperf311 tool is used. The follow-
ing table (Tab. 2) lists the mean network properties
for each network setting.

9 manpages.ubuntu.com/manpages/bionic/man8/tc-
netem

10 manpages.ubuntu.com/manpages/cosmic/man8/ping
11 manpages.ubuntu.com/manpages/focal/en/man1/iperf3



Table 2:  Average network properties of the three
network configurations

Default package loss
(20 %)

Delay
(2000 ms)

Latency (ms) 9.6 13.1 2012.5

Bandwidth
(Mbits/sec)

10.45 0.78 3.35

Jitter (ms) 3.26 25.8 6.4

Loss (%) 0.0 20.8 1.6

3.3 Results

Since the wireless network that was used for testing
is a local router the following section will focus on
qualitatively comparing round trip and transmission
times  of  the  different  communication  implementa-
tions.  Since  establishing  a  connection  does  require
some  additional  time,  all  initial  time  measurement
values are sliced off the plotted data to enhance visi -
bility.

3.3.1 Command Transfer

The following figure (Figure 1) shows boxplots for
the  transmission  time  of  randomly  generated  twist
commands averaged over three experiments with 200
runs each. Over the y-axis the ROS communication,
using a ROS service call, is compared to two trans-
port  implementations  of  the  RRC  library,  namely
ZMQ and UDT.

Over the course of all network configurations (de-
fault,  package  loss  and  delay)  ZMQ  consistently
achieves the fastest command transfer. UDT clocks
in at around twice the speed for all runs without an
emulated delay. With the two seconds of latency, the
comparably  small  transfer  time  of  4-8  x10 ³  s  for⁻³ s for
ZMQ and UDT respectively is overshadowed. This
makes  ZMQ and  UDT  almost  indistinguishable  in
transfer time for the network configuration with arti-
ficial  delay (bottom row).  Using the same network
configuration,  ROS  needs  three  times  as  long  as
ZMQ  or  UDT  to  receive  an  acknowledgement
(uint_16) about the successful command transfer.

Figure 1: Comparing transmission times (s) for ran-
dom twist commands using ROS or one of two trans-
port implementations of the RRC library, based on

either ZMQ or UDT. Results are obtained on a local
wireless network in different configurations: default
(top row), emulated package loss of 20% (mid row)

and artificial delay of 2 000 ms (bottom row). Results
are plotted on a logarithmic x-axis. 



3.3.2 Telemetry Transfer

In Figure 2 and 3 measurements of round trip time
for  telemetry  data  are  displayed.  Telemetry data  is
constructed as a  random string of specified size (1
and 10 MB) and transmitted via either ROS commu-
nication (topics) or with the ZMQ or UDT transport
implementation of the RRC library.

For telemetry data with a size of 1MB all tranport
options  deliver  in  a  similar  round  trip  time.  ROS
transfers the random string forth and back in an aver-
age of 1.7 seconds, while ZMQ and UDT perform the
same task in 1.16 and 1.45 seconds respectively. For
telemetry data with 10 MB the difference in round
trip  time  becomes  more  evident.  ROS  transport
amounts to an average of 18.16 seconds, while ZMQ
performs   the  round  trip  transfer  in  11.4  seconds.
UDT takes an average of 3.8 second. Even though the
initial  and usually longest  round trip  time is  sliced
away of all plotted data, ZMQ and ROS show a num-
ber  of  significant  outliers,  while  UDTs  outlier  are
much more contained and not even visible for large
telemetry.

Figure 2: Round trip time of telemetry transfer using
ROS topics and the two transport implementations
ZMQ and UDT of the RRC library. The two rows

compare transfer of 1MB (top row) and 10MB (bot-
tom row) respectively.

From  the  three  transport  options  only  ROS  and
UDT are able to handle an emulated delay of 2000
ms.  ZMQ is  not  able  to  successfully  transfer  data,
even though a connection is established. On average
ROS (17.6 s) takes more than 3.5 times longer than
UDT (4.8  s)  to  transfer  1  MB of  data.  For  larger
telemetry data (10MB) this  factor decreases to 1.4.

However UDT takes about 15 seconds less (44.7 s)
than ROS (61.6 s).

Figure 3: The two plots above show the round trip
time of telemetry data (1 MB – top row, 10 MB – bot-

tom row). The performance of ROS is compared to
the UDT transport implemented by the RRC library.
Both in a network with an emulated delay of 2000

ms. The ZMQ implementation cannot transfer data in
networks with such high latency and is therefore ex-

cluded.

3.4 Discussion

While all transport protocols show similar perfor-
mance on the default network, a disadvantage of ROS
becomes evident for transfer of commands or data on
a network with high delays or package loss. For the
acknowledged commands this may be due to the fact
that the ROS service calls are based on ROS topics.
Therefore two seperate connections are used to trans-
fer the request and response. This may result in the
measured delays in comparison to the point-to-point
connection of UDT or the immediate request and re-
ply sockets of ZMQ. 

In terms of telemetry transport UDT outperforms
the  other  two  transport  implementations  especially
for higher loads and for  high latency. This explicit
advantage of UDT is based on the comparably small
over-head  and  the  connection-less  character  of  the
underlying UDP protocol in comparison to the con-
nection-oriented heavy-weight TCP protocol. By de-
sign the UDT protocol is especially suited for data in-
tensive  applications,  which  proves  well  in  the  pre-
sented results and becomes even more evident in the
experiments with emulated delay.



5 CONCLUSION

The library  acts  as  an  alternative communication
layer to existing RCOS solutions. It is shown in the
scope of this paper that especially the configurable
UDT transport implementation of the presented RRC
library can serve as a more reliable and fast commu-
nication library than what is currently being used in
native ROS.  While already being able to  compete
with state of the art middleware, the most prominent
advantage  of  the  library  is  that  it  provides  config-
urable communication sockets to tailor the communi-
cation  to task specific requirements and use custom
protocols. The configurable and modular character of
the  communication  sockets  is  further  enhanced
through  the  availability  of  reliable,  acknowledged
transfer  via  the  command  channel  or  non-blocking
data transmission over the telemetry sockets. More-
over the provided transport options are configurable.
ZMQ allows for a number of messaging patterns and
UDT offers control over reliability and congestion al-
gorithms.

Due to the lightweight and framework independent
character of the library, it is already being used ex-
tensively  in  several  projects,  e.g.  the  EU  funded,
space  robotics  project  PRO-ACT  [4].  Providing  a
common communication layer between multiple ro-
bots for cooperative manipulation, sockets for inde-
pendent  control  of  base  and  manipulators,  robust
monitoring for mission planning and even a common
message definition for sensor fusion between differ-
ent frameworks. At this point it should be highlighted
that control or monitoring instances do not need to be
compatible with the framework of the entity that is
running the CR. They solely have to wrap the RRC
library or even just the RC one. Both being frame-
work and OS independent.

In  addition  the  library  can  be  used  as  a  config-
urable, generic communication interface for arbitrary
purposes not only for actual hardware applications. It
could even be used as a  common interface for  ex-
changing simulation engines or for realizing compu-
tation in distributed setups.  Due to the support of  
C++ libraries in many other programming languages
like  Java,  python  or  Go  the  presented  library  can
even serve as an adapter between various program-
ming languages.
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